Муниципальное бюджетное общеобразовательное учреждение «Образовательный комплекс «Перспектива» города Губкина Белгородской области

«Рассмотрено»

Руководитель ШМО

Белоглазова О. А.

Протокол № У от «26» 08 2022 г.

«Согласовано»

Заместитель директора

Васильева В. Н.

от «29» 08 2022 г.

«Рассмотрено»

на педагогическом совете

Протокол № <u>1</u> от «29» 08 2022 г. «Утверждаю»

И а директора

Рыбальченко Е. Н.

Прикат Хет от ному ов 2022 г.

Opening of the Control of the Contro

Рабочая программа по учебному предмету «Физика» для 7-9 классов (базовый уровень)

Составители программы:

Игнатенко Любовь Николаевна Карабут Ольга Тимофейовна Рабочая программа разработана на основе ФГОС, примерной программы основного общего образования по физике программы образовательных учреждений. Физика. 7—9 классы: рабочая программа к линии УМК И. М. Перышкина, Е. М. Гутник, А. И. Иванова / Е. М. Гутник, М. А. Петрова, О. А. Черникова. — Москва: Просвещение, 2021 Срок реализации данной программы: 3 года

І, ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

По окончании изучения курса обучающийся научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения; х распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы. понимать роль эксперимента в получении научной информации;
- проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений;
- проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования:
- проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
- анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;
- понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
- использовать при выполнении учебных задач научно популярную литературу о физических явлениях, справочные материалы, ресурсы Интернета.

По окончании изучения курса обучающийся получит возможность научиться:

- осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни; - использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

- сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;
- самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;
- воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
- создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Механические явления

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения, колебательное движение, резонанс, волновое движение (звук);
- описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
 - различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, сила трения скольжения, коэффициент трения, давление, импульс тела, механическая работа, механическая мощность, кинетическая энергия, потенциальная энергия, КПД простого механизма, амплитуда, период

и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

По окончании изучения курса обучающийся получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространства;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (законы движения, закон Гука, Архимеда и др.);
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: внутренняя энергия, температура, количество теплоты, удельная теплоемкость вещества, удельная теплота сгорания топлива, удельная теплота плавления, удельная теплота парообразования, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
 - различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
 - приводить примеры практического использования физических знаний о тепловых явлениях;
 - решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины

(количество теплоты, температура, удельная теплоемкость вещества, удельная теплота сгорания топлива, удельная теплота плавления, удельная теплота парообразования, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

По окончании изучения курса обучающийся получит возможность научиться:

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электромагнитные явления

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света;
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр);
 - использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;

- приводить примеры практического использования физических знаний о электромагнитных явлениях; х различать основные признаки изученных физических моделей: точечный источник света, световой луч;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

По окончании изучения курса обучающийся получит возможность научиться:

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля—Ленца и др.);
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовые явления

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, альфа, бета и гамма излучения, возникновение линейчатого спектра излучения атома;
- описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;

- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

По окончании изучения курса обучающийся получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Строение и эволюция Вселенной

По окончании изучения курса обучающийся научится:

- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
 - понимать различия между гелиоцентрической и геоцентрической системами мира;

По окончании изучения курса обучающийся получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
 - различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;
 - различать гипотезы о происхождении Солнечной системы.

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно - деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Одним из путей повышения мотивации и эффективности учебной деятельности в основной школе является включение учащихся в учебно-исследовательскую и проектную деятельность, которая имеет следующие особенности:

1) цели и задачи этих видов деятельности учащихся определяются как их личностными мотивами, так и социальными. Это означает, что такая деятельность должна быть направлена не только на повышение компетентности подростков в предметной области определенных учебных дисциплин, не только на развитие их способностей, но и на создание продукта, имеющего значимость для других;

- 2) учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей и т. д. Строя различного рода отношения в ходе целенаправленной, поисковой, творческой и продуктивной деятельности, подростки овладевают нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества в коллективе;
- 3) организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности. В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному виду деятельности.

Личностными результатами обучения физике в основной школе являются:

- 1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость использования русского языка и языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа). Осознание этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических
- и традиционных ценностей многонационального российского общества. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.
- 2. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность к осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- 3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; веротерпимость, уважительное отношение к религиозным чувствам, взглядам людей или их отсутствию; знание

Основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность

на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского общества и российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества). Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта

участия в социально значимом труде. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.

- 4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
- 5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов
- диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).
- 6. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами; идентификация себя в качестве субъекта социальных преобразований, освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного
- отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов
- взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).
- 7. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.
- 8. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видение окружающего мира; способность к эмоционально-ценностному освоению мира, самовыражению и ориентации в художественном и нравственном пространстве культуры; уважение к истории культуры своего Отечества, выраженной в том числе в понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного

отношения к традициям художественной культуры как смысловой, эстетической и личностно-значимой ценности).

9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).

ІІ. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Физика и ее роль в познании окружающего мира

Физика — наука о природе. Физические тела и явления.

Физические свойства тел. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений и объектов природы. Физические величины. Измерения физических величин. Физические приборы. Международная система единиц. Точность и погрешность измерений. Физические законы и закономерности. Физика и техника. Научный метод познания. Роль физики в формировании естественно-научной грамотности. Механические явления Механическое движение. Материальная точка как модель физического тела. Относительность механического движения. Система отсчета. Геоцентрическая и гелиоцентрическая системы мира. Физические величины, необходимые для описания движения, и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения). Равномерное и равноускоренное прямолинейное движение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном

лвижении. Равномерное движение по окружности. Инерция. Первый закон Ньютона. Инерциальная система отсчета. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила. Единицы силы. Второй закон Ньютона. Третий закон Ньютона. Свободное падение тел. Сила тяжести. Закон всемирного тяготения. Сила упругости. Закон Гука. Вес тела. Невесомость. Связь между силой тяжести и массой тела. Сила тяжести на других планетах. Динамометр. Сложение двух сил, направленных по одной прямой. Равнодействующая сил. Сила трения. Трение скольжения. Трение покоя. Трение в природе и технике. Искусственные спутники Земли. Первая космическая скорость. Импульс тела. Замкнутая система тел. Закон сохранения импульса. Реактивное движение. Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии. Простые механизмы. Условия равновесия твердого тела, имеющего закрепленную ось движения. Момент силы. Центр тяжести тела. Рычаг. Равновесие сил на рычаге. Рычаги в технике, быту и природе. Подвижные и неподвижные блоки. Равенство работ при использовании простых механизмов («золотое правило» механики). Виды равновесия тел. Коэффициент полезного действия механизма. Давление твердых тел. Единицы измерения давления. Способы изменения давления. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостями. Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Атмосферное давление. Методы измерения атмосферного давления. Опыт Торричелли. Барометр- анероид. Манометры: открытый жидкостный и металлический. Атмосферное давление на различных высотах. Гидравлические механизмы (пресс, насос). Поршневой жидкостный насос. Давление жидкости и газа на погруженное в них тело. Закон Архимеда. Условия плавания тел. Плавание тел и судов. Воздухоплавание. Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. Гармонические колебания. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота тона, тембр и громкость звука. Отражение звука. Эхо. Звуковой резонанс.

Тепловые явления

Строение вещества. Атомы и молекулы. Опыты, доказывающие атомное строение вещества. Размеры молекул. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие (притяжение и отталкивание) частиц вещества. Явление смачивания и несмачивания. Агрегатные состояния вещества. Модели строения твердых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярного строения. Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Способы изменения внутренней энергии: работа и теплопередача. Теплопроводность. Конвекция. Излучение. Примеры теплопередачи в природе и технике. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теплообмене. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования и конденсации. Влажность воздуха. Измерение влажности воздуха. Работа газа и

пара при расширении. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Электромагнитные явления

Электризация физических тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. Электроскоп. Электрометр. Электрическое поле как особый вид материи. Напряженность электрического поля. Делимость электрического заряда. Электрон. Закон сохранения электрического заряда. Строение атома. Действие электрического поля на электрические заряды. Статическое электричество, его учет и использование в быту и технике. Электрический ток. Источники тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Носители электрических зарядов в металлах. Сила тока. Электрическое напряжение. Электрическое сопротивление проводников. Единицы сопротивления. Зависимость силы тока от напряжения. Закон Ома для участка цепи. Удельное сопротивление. Реостаты. Последовательное и параллельное соединение проводников. Работа электрического поля по перемещению электрических зарядов. Мощность электрического тока. Нагревание проводников электрическим током. Закон Джоуля— Ленца. Конденсатор. Энергия электрического поля конденсатора. Электрические нагревательные и осветительные приборы. Короткое замыкание. Правила безопасности при работе с электроприборами. Постоянные магниты. Взаимодействие магнитов. Опыт Эрстеда. Магнитное поле. Индукция магнитного поля. Магнитное поле прямого тока. Магнитное поле катушки с током. Магнитное поле постоянных магнитов. Электрический двигатель. Магнитное поле Земли. Однородное и неоднородное магнитное поле. Правило буравчика. Обнаружение магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Правило левой руки. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Электромагнитные колебания. Колебательный контур. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Электромагнитная природа света. Скорость света. Источники света. Прямолинейное распространение света. Отражение света. Закон отражения света. Плоское зеркало. Изображение предмета в зеркале. Преломление света. Закон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы. Интерференция и дифракция света. Относительный и абсолютный показатели преломления. Дисперсия света. Цвета тел. Спектрограф и спектроскоп. Типы оптических спектров. Спектральный анализ.

Квантовые явления

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма - излучения. Опыты Резерфорда. Строение атомов. Планетарная модель атома. Поглощение и испускание света атомами. Происхождение линейчатых спектров. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Период полураспада. Закон радиоактивного распада. Экспериментальные методы исследования частиц. Протонно - нейтронная модель ядра. Физический смысл зарядового и массового чисел.

Изотопы. Правила смещения для альфа-и бета-распада при ядерных реакциях. Энергия связи атомных ядер. Закон Эйнштейна о взаимосвязи массы и энергии. Дефект масс. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд. Строение и эволюция Вселенной Геоцентрическая и гелиоцентрическая системы мира. Состав, строение и происхождение Солнечной системы. Физическая природа небесных тел Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной. Гипотеза Большого взрыва. **Лабораторные работы и опыты Проведение прямых измерений физических величин**

- 1. Определение показаний измерительного прибора.
- 2. Измерение размеров тел.
- 3. Определение размеров малых тел.
- 4. Измерение массы тела.
- 5. Измерение объема твердого тела.
- 6. Градуирование пружины и измерение силы динамометром.
- 7. Измерение времени между ударами пульса.
- 8. Измерение времени нагревания проволок из разных металлов до одной и той же температуры.
- 9. Измерение периода колебаний маятника.
- 10. Измерение температуры воздуха.
- 11. Измерение силы тока и его регулирование.
- 12.Измерение напряжения на различных участках последовательной электрической цепи.
- 13. Измерение фокусного расстояния линзы.
- 14. Измерение естественного радиоактивного фона дозиметром.

Расчет по полученным результатам прямых измерений зависимого от них параметра (косвенные измерения)

- 1. Измерение скорости равномерного движения.
- 2. Определение плотности твердого тела.
- 3. Определение жесткости пружины.
- 4. Определение давления, которое оказывает тело на поверхность.
- 5. Изучение выталкивающей силы, действующей на погруженное в жидкость тело.
- 6. Выяснение условий плавания тела в жидкости.
- 7. Выяснение условия равновесия рычага.

- 8. Определение работы и мощности.
- 9. Определение КПД наклонной плоскости.
- 10. Измерение относительной влажности воздуха.
- 11. Определение количества теплоты.
- 12. Измерение удельной теплоемкости вещества.
- 13. Измерение мощности и работы тока в электрической лампе.
- 14. Измерение сопротивления проводника. Изучение принципа действия реостата.
- 15. Измерение оптической силы линзы.
- 16. Измерение ускорения свободного падения.
- 17. Определение частоты колебаний груза на пружине и нити.

Наблюдение явлений и постановка опытов (на качественном уровне) по обнаружению факторов, влияющих на протекание данных явлений

- 1. Наблюдение зависимости периода колебаний груза на нити от длины и независимости от массы.
- 2. Наблюдение зависимости периода колебаний груза на пружине от массы и жесткости.
- 3. Наблюдение зависимости давления воздуха от объема.
- 4. Наблюдение зависимости давления насыщенного пара от объема.
- 5. Наблюдение зависимости температуры остывающей воды от времени.
- 6. Наблюдение зависимости давления жидкости от высоты столба жидкости.
- 7. Наблюдение явления диффузии в газах и жидкостях.
- 8. Исследование зависимости скорости диффузии от температуры.
- 9. Наблюдение явлений смачивания и несмачивания.
- 10. Изучение равномерного движения.
- 11. Нахождение центра тяжести фигуры неправильной формы.
- 12. Доказательство плохой теплопроводности воды и воздуха.
- 13. Наблюдение конвекции в жидкостях и газах.
- 14. Изучение устройства калориметра.
- 15. Изучение процесса теплообмена.
- 16. Наблюдение процессов плавления и отвердевания.
- 17. Наблюдение зависимости скорости испарения жидкости от рода жидкости, площади ее поверхности и от движения воздуха над

поверхностью жидкости.

- 18. Наблюдение затухающих колебаний.
- 19. Наблюдение явления звукового резонанса.
- 20. Наблюдение электризации тел через их взаимодействия.
- 21. Наблюдение взаимодействия магнитной стрелки и постоянного магнита.
- 22. Наблюдение картины линий магнитного поля прямого тока.
- 23. Изучение явления взаимодействия катушки с током и магнита.
- 24. Изучение явления электромагнитной индукции.
- 25. Наблюдение прямолинейного распространения света.
- 26. Наблюдение явления отражения и преломления света.
- 27. Изучение характера изображения предмета в собирающей линзе. Измерение оптической силы линзы.
- 28. Наблюдение интерференции света.
- 29. Наблюдение дифракции света.
- 30. Наблюдение дисперсии света.
- 31. Наблюдение сплошного и линейчатых спектров испускания.
- 32. Обнаружение зависимости времени затухания колебаний нитяного маятника от его параметров.
- 33. Исследование зависимости кинетической энергии от массы тела и его скорости.
- 34. Исследование зависимости пути от времени при равноускоренном движении без начальной скорости.
- 35. Исследование равноускоренного движения без начальной скорости.
- 36. Исследование зависимости силы трения скольжения от площади соприкосновения тел и прижимающей силы.
- 37. Исследование зависимости силы трения от материала соприкасающихся поверхностей.
- 38. Исследование силы упругости.
- 39. Исследование реактивного движения.
- 40. Исследование зависимости периода и частоты свободных колебаний нитяного маятника от его длины.
- 41. Исследование зависимости периода колебаний груза на пружине от жесткости и массы.
- 42. Исследование зависимости силы тока через проводник от напряжения.
- 43. Исследование зависимости силы тока через лампочку от напряжения. 44. Исследование зависимости угла преломления от угла падения.
- 45. Изучение деления ядра атома урана по фотографии треков.
- 46. Изучение треков заряженных частиц по готовым фотографиям.

Проверка заданных предположений (прямые измерения физических величин и сравнение заданных соотношений между ними). Проверка гипотез

- 1. Проверка гипотезы: при последовательном соединении лампочки и резистора или двух проводников общее напряжение равно сумме напряжений на отдельных элементах этого участка.
- 2. Проверка правила сложения токов для двух параллельно включенных резисторов.

Знакомство с техническими устройствами и их конструирование

- 1. Конструирование устройства для сравнения масс тел (весов).
- 2. Изготовление прибора для демонстрации закона Паскаля.
- 3. Конструирование модели фонтана.
- 4. Изготовление автопоилки.
- 5. Изготовление модели устройства с применением гидравлической машины.
- 6. Изготовление игрушки «картезианский водолаз». Объяснение принципа её действия.
- 7. Конструирование ареометра и испытание его работы.
- 8. Конструирование модели китайского фонарика.
- 9. Конструирование наклонной плоскости.
- 10. Конструирование волосного гигрометра (гигроскопа) и проверка его действия.
- 11. Сборка электрической цепи и измерение силы тока в ее различных участках.
- 12. Изготовление простейшего гальванического элемента и гальваноскопа. Проверка их действия.
- 13. Изготовление проводников с заданным сопротивлением.
- 14. Конструирование модели корабля или лодки.
- 15. Конструирование зеркального перископа.
- 16. Оценка своего зрения и подбор очков.

ІІІ. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Количество часов, отведенных на изучение физики в основной школе						
Тема (раздел) /класс	7 класс	8 класс	9 класс	всего по факту		
Физика и ее роль в познании окружающего мира	4	-	-	4		
Механические явления	56	-	49	105		
Тепловые явления	6	22	-	28		
Электрические и магнитные явления	-	34	-	34		
Световые явления		10		10		
Электромагнитные поле и волны	-	-	22	22		
Строение атома и атомного ядра. Использование энергии атомных ядер	-	-	18	18		
Строение и эволюция Вселенной	-	-	5	5		
Повторение	2	2	9	13		
0 Резервное время	2	2	-	4		
1 Bcero	70	70	102	242		
2 Лабораторные работы	12	10	9	31		

13	Контрольные работы	5	6	5	16